Nuclear Research Reactors

Seminar on

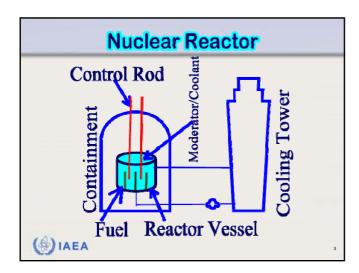
Nuclear Science and Technology

for Diplomats

P. Adelfang

(+)Division of Nuclear Fuel Cycle and Waste Technology (NEFW) Dept. of Nuclear Energy (NE)

IAEA, Vienna, February 3-5, 2009


International Atomic Energy Agency

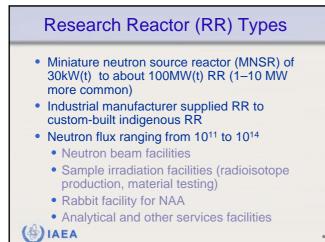
Nuclear Research Reactors (RR)

Outline of Presentation

- •Introduction to RR principles, components
- •RR types and features
- •RR utilization: Techniques and Applications
- •RR issues & needs: perceptions and concerns
- •Agency assistance on RRs
- •Some Stories of Success

() IAEA

Nuclear Research Reactors – Typical Features


- Typical power levels 30kW to 10MW
- Intense source of neutrons. Typical steady-state neutron flux: 10¹¹ to 10¹⁴ neutrons/cm² s
- Vertical and horizontal channels to avail neutrons
- Various coolants / moderators
- light water, heavy water, organic liquids
- Various types of fuel
 - plates, rods, tubes, liquid in homogeneous RR
 - metallic, hydrides, silicides
- Natural and forced circulation cooling

) IAEA

Research Reactors: Some Typical Characteristics

- Small volume cores
- 90% have power level less than 10 MW(t)
- Generally higher enrichment fuel than in power reactors (though some RRs use natural uranium fuel)
- Natural and forced cooling
- May have pulsing capability
- () IAEA

Research Reactor Data according to the	
Agency's RR Database (RRDB)	
Reactors in operation	242
HEU → LEU converted	62
HEU \rightarrow LEU planned	39 + 28
 Total reactors listed 	671
 Reactors Shut down 	246
 Decommissioned 	172
 Under Construction 	7
Planned	4
(LEU <20% ²³⁵ U; HEU >20 to 93% ²³⁵ U)	
	;

Research Reactor Utilization Techniques and Purposes

- Education & Training
- Fuel testing and qualification
- Supporting power reactor programmes
- Radioisotope Production
- Neutron Scattering
- Material science investigations
- Neutron Activation Analysis (NAA)
- Neutron transmutation doping
- Neutron Radiography

(🖗) IAEA

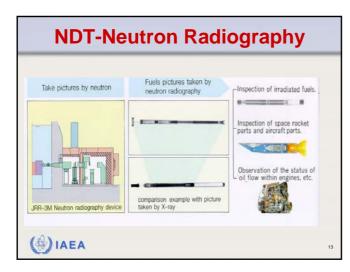
Research Reactor (RR) Utilization - Applications

Neutron Irradiation for Radioisotope Production

- Principle: Target element's activation in RR for specified period to induce radioactivity
- *Typical Uses*: Production of radioisotopes for a variety of applications in medicine, industry, agriculture, biology and research
- e.g. ANSTO, BARC/Dhruva, HANARO, Safari-1 etc

Radioisotope Production in RR • Medicine • Low n flux: <10¹³ Diagnosis ²⁴Na, ³²P, ⁸²Br Treatment • Industry • Medium n flux: 2-8 X 10¹³ ⁸²Br, ⁹⁹Mo, ¹²⁵I, ³⁵S, Radiography > Tracer Techniques ¹³¹I, ¹⁵³Sm, ¹⁷⁷Lu, ➢ Radiation Technology ^{186/188}Re, ¹⁹²Ir • Food and Agriculture • High n flux: >10¹⁴ > Tracer Techniques ⁶⁰Co, ¹⁹²Ir, ⁷⁵Se, ⁸⁹Sr, > Mutants - Productivity ¹⁷⁷Lu, ⁹⁹Mo, ¹⁸⁸W Disinfestation – Safety, Shelf-life () IAEA

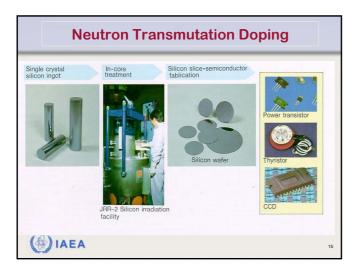
Neutron scattering


• *Principle*: RR neutrons incident on sample and record the angular and energy distribution of scattered neutrons.

- *Typical Uses*: order and dynamics of atoms and molecules in condensed matter, nondestructive testing of materials – residual stress in engineering components; surface studies - thin films, polymers and biological materials, magnetic specimen
- e.g. ILL, Grenoble; HMI, Berlin; HFIR, ORNL; HFR, Petten etc.

Research Reactor (RR) Utilization - Applications

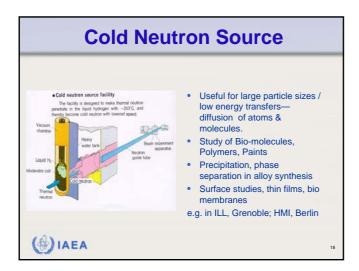
Neutron Radiography


- *Principle*: Transmission of neutron through selective absorption and scattering results in photograph with details of material contents and defects in specimen.
- Typical Uses: Investigation of bulk materials; explosives,
- e.g. PSI, MIT, IPEN, HMI etc.

Neutron transmutation doping

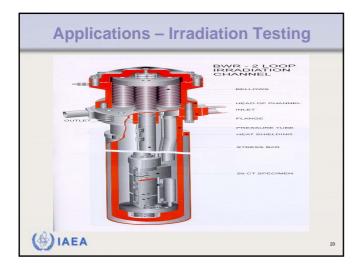
- Principle: Irradiation of Si by neutron transmutes some of the Si atoms to P→ change in electrical conduction
- Typical Uses: Semiconductor devices
- e.g. Safari-1, HANARO etc.

Research Reactor (RR) Utilization - Applications


Neutron Activation Analysis NAA

- Principle: Sample exposed to neutron fluence for a specified time → induced activation products characteristic of the elements and the quantity
- *Typical Uses*: Assessment of elemental composition of chemical, geological, biological, environmental, forensic samples and art objects
- Most centres, even in small reactor e.g. in Ghana, Jamaica and medium size reactor e.g. in Hungary

() IAEA



Neutron irradiation for materials testing

- *Principle*: Target material's irradiation by neutrons and exposure to radiation field in RR for specified period leading to changes/damages
- *Typical Uses*: Understanding and assessment of radiation induced damage
- Modification to material characteristics, structure
- Utility for new reactor designs and concepts; Data for plant life-extension studies and decommissioning/disposal purposes

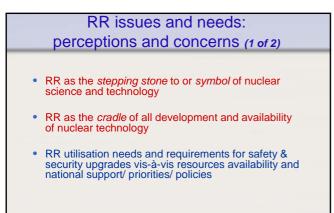
19

(A) IAEA

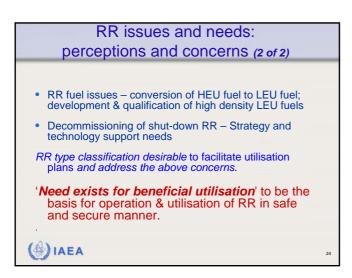
Post-irradiation examination (PIE)

Principle: Fuel & related material's exposure to RR ambience (radiation, temperature, pressure, neutron flux) for specified period

• *Typical Uses*: Reactor fuel testing and development, validation/qualification, trouble-shooting. Understanding fuel behaviour in various conditions


(A) IAEA

Research Reactor (RR) Utilization - Applications


Education and Training for HRD

- Science teachers & students
- Engineering teachers & students
- Nuclear power plant operator trainees
- Operational health physicists
- Regulators
- Public awareness

(A) IAEA

() IAEA

IAEA Assistance on Research Reactors

- The Agency is ready to assist Member States in all RR related issues:
- Utilization
- Safety and Security
- RR operation, maintenance, reliability and availability
- RR nuclear fuel cycle issues
- RR spent fuel management
- New RRs and refurbishment and modernization

25

- RR ageing
- RR decommissioning

Story of Success: Instrument development / Regional collaboration

- Neutron beam applications: Small Angle Neutron scattering and Reflectometry are important for R & D and industrial applications.
- IAEA-TC project for RR utilization
- Greece installing instruments for neutron scattering and establish a Regional Centre. Expected to complete this year
- South Africa to establish a SANS centre in South Africa, which is expected to be used by researchers and industries
- Facilities expected to be installed/operational 2007

) IAEA

Story of Success: Conversion of TRIGA 14-MW (Romania)

- TC project ROM/4/024
- Contract to supply LEU fuel between the IAEA, Romania and CERCA/TRIGA International (November 2003)
- IAEA officials together with officials from CNCAN and the Institute for Nuclear Research (ICN), Pitesti, jointly carried out all the QA audits and acceptance inspections
- Final lot of LEU delivered to Pitesti on March 30, 2006
- Mid-May 2006 full-core conversion to LEU completed
- All irradiated HEU removed prior to May 12, 2006 will be shipped to the US

) IAEA

Story of Success: Development of National Capacity for RR fuel Fabrication (Chile)

- TC Project CHI/4/021
- Development of domestic capacity to fabricate LEU silicide fuel with IAEA assistance
- Chile qualified as a supplier of silicide fuel elements through an irradiation and post irradiation qualification programme
- Chilean fabrication capacity used to fabricate LEU fuel to convert RECH-1
- RECH-1 fully converted to LEU in May 11
 2006
 IAEA

2

